Tollens-Probe und Fehling-Probe

Phänomenologie: Bei der Tollens-Probe werden Silber-Ionen zu Silber-Atomen reduziert, wobei ein sichtbarer Silberspiegel auf der inneren Wand des Reagenzglases erscheint. Bei der Fehling-Probe werden blaue Kupfer-Ionen zu rotbraunem Dicupferoxid Cu₂O umgewandelt.

Reaktionsprinzip: Beide Proben sind Redoxreaktionen, bei denen Ionen von einer höheren Oxidationsstufe zu einer niedrigeren reduziert werden. Im Gegenzug wird das Aldehyd-Molekül zur Carbonsäure oxidiert, d.h. das Kohlenstoffatom der Carbonylgruppe von der Oxidationsstufe +I zur Oxidationsstufe +III in der Carboxy-Gruppe oxidiert. Mit der sichtbaren Veränderung verbunden ist also die Oxidation des Aldehyds und die Reduktion eines Ions. Chemischer Nachweis und Redoxreaktion sind also untrennbar verbunden!

Welche weitere	Velche weiteren Gemeinsamkeiten und Unterschiede zeigen nun diese beiden Reaktionen?		
	Tollens-Probe	Fehling-Probe	
Reagenzien:	AgNO ₃ (aq): Ag ⁺ (aq) und NO ₃ G(aq) Natronlauge NaOH(aq): Na ⁺ (aq) + OHG(aq) Ammoniak-Lösung: NH ₃ (aq) Aldehyd, z.B. Acetaldehyd, Propanal, u.a.	Fehling I: CuSO4(aq): Cu ²⁺ (aq) + SO ₄ ² G(aq) Fehling II: K-Na-Tartrat, K-Na-Salz der Weinsäure (acidum tartraricum) und Natronlauge NaOH(aq) Weinsäure: HOOC-CHOH-CHOH-COOH mit KOH/NaOH werden alle 4 H-Atome durch K ⁺ /Na ⁺ -Ionen neutralisiert!	
		Aldehyd, z.B. Acetaldehyd, Propanal, u.a.	
Teilgleichung Oxidation	H +I o H +I o H + III o H + 2 eG H - C - C O H O H O H O H O H O H O H O H O H O		
Teilgleichung Reduktion Oxidations- zahländerung	Ag ⁺ (aq) + 1 eG > Ag(s) Silberspiegel +I> 0 Der stöchiometrische Faktor ist !	2 Cu ²⁺ (aq) + 2 eG> Cu ₂ O Die Herkunft des O-Atoms wird noch geklärt! +II> +I	
	Weder das Ag ⁺ - noch das Cu ²⁺ -Ion sind offensichtlich in der Lage, sich die notwendigen Elektronen direkt vom C-Atom zu holen. Wieso? Und: woher kommt das zusätzliche Sauerstoff-Atom?		
1. Schritt:	Ag ⁺ (aq) +NO ₃ G(aq) + Na ⁺ (aq) + OHG(aq) —> AgOH(s) +Na ⁺ (aq) +NO ₃ G(aq) Silberhydroxid ist braun und schwerlöslich! Problem!!!! Welche Folgen hat die Schwerlöslichkeit für die beiden Oxidationsmittel? Sie sind einer weiteren chemischen Reaktion nicht mehr zugänglich.	Cu ²⁺ (aq) + SO ₄ ² G(aq) + 2 Na ⁺ (aq) + OHG(aq) —> Cu(OH) ₂ (s) + 2 Na ⁺ (aq) +SO ₄ ² G(aq) Kupferhydroxid ist türkisblau und <u>schwerlöslich!</u>	

Problem- lösung: Komplexier- ung der Ionen	AgOH(s) + 2 NH ₃ (aq) -> [Ag(NH ₃) ₂] ⁺ OHG(aq) Silber di amin- Komplex Das Ag ⁺ -Ion bleibt als Ion in löslicher Form erhalten, kann also als Oxidationsmittel = Elektronenakzeptor wirken.	Cu ²⁺ (aq) + 2 C ₄ H ₂ O ₆ ⁴ G(aq) + 6 Na ⁺ (aq) ->Na ₆ ⁺ [Cu(C ₄ H ₂ O ₆ ⁴ G) ₂] ² G(aq) Das Cu ²⁺ -Ion bleibt als Ion in löslicher erhalten, kann also als Oxidationsmittel = Elektronenakzeptor wirken.
	Das OHG-Ion ist in beiden Fällen die Quelle des zusätzlichen O-Atoms für den Übergang vom Aldehyd zur Carbonsäure: 2 OHG —> H ₂ O + O ² G	

Zusammenfassung:

- 1. Das OHG-Ion ist in beiden Fällen die Quelle des zusätzlichen O-Atoms für den Übergang vom Aldehyd zur Carbonsäure: 2 OHG \longrightarrow H_2O+O^2G
- 2. Nachteil des OHG-Ion: es fällt die Edelmetall- bzw. Halbedelmetall-Ionen Ag⁺ und Cu²⁺ als schwerlösliche Salze aus ihrer löslichen Form heraus.
- 3. Lösung des dadurch entstandenen Problems: beide Ionen werden komplexiert, d.h. sie behalten ihre Teilchenform als Ion und ihre Löslichkeit, können also als Oxidationsmittel wirken und das C-Atom der Carbonylgruppe oxidieren.