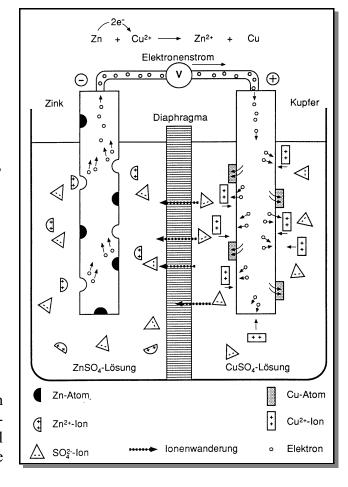

Das Daniell-Element

Versuch 1: In die Mitte eines großen Becherglases wird ein Tonzylinder gestellt, der mit einer Lösung von Kupfersulfat der Konzentration $c(CuSO_4) = 0,1$ mol/L halbvoll gefüllt ist. In die Kupfersulfat-Lösung wird ein dickes Kupferblech gestellt. In das Becherglas selbst wird eine Zinksulfat-Lösung derselben Konzentration gefüllt, ein dickes Zink-Blech umgibt die Tonzelle.

Die beiden Metalle werden über Verbindungskabel und Krokodilklemmen mit einem hochohmigen Spannungsmessgerät verbunden. Statt dem Voltmeter kann auch ein Kleinstelektromotor angeschlossen werden.

Beobachtungen:



Arbeitsaufträge:

- 1. Fertige eine Übersichtskizze an!
- 2. Welche Metallplatte ist mit welchem Pol des Messgeräts verbunden?
- 3. Welche Metallplatte übernimmt damit welche Funktion: Elektronendonator oder Elektronenakzeptor?
- 4. Welche Aufgabe hat die Tonzelle? Welche Materialien können vergleichbar funktionieren?
- 5. Welche Einzelreaktionen spielen sich in den jeweiligen Lösungen ab?
- 6. Welche Rolle spielt die Größe der Oberfläche der Metalle?
- 7. Welche Faktoren bestimmen die Dauer des Versuchs?
- 8. Wie wird eine solche Versuchsanordnung als Gesamtsystem formal dargestellt?
- 9. Beschreibe die Vorgänge in der nebenstehenden Abbildung!

Versuch 2: In ein U-Rohr mit einem Diaphragma in der Mitte werden in den einen Schenkel eine Zink-Stange (Zink-Elektrode), in den anderen Schenkel eine Kupfer-Stange (Kupfer-Elektrode) gesteckt. Die Schenkel sind mit verdünnter Schwefelsäure gefüllt.

D	1 14	
KAA	bachtungen:	
DUU	Dachtungen.	

Arbeitsaufträge:

- 1. Erkläre die Beobachtungen aus Versuch 2.
- 2. Welche Unterschiede gibt es zu Versuch 1?
- 3. Wann sind die Leistungsgrenzen dieses Systems erreicht?