|--|

Energetische Vorgänge beim Daniell-Element

Die Reaktionen beim Daniell-Element $Zn/Zn^{2+}_{(aq)}//Cu^{2+}_{(aq)}/Cu$ lassen sich in eine Reihe von Einzelvorgängen zerlegen, deren Energiebeträge in Bezug zum Formelumsatz in der unteren Tabelle dargestellt sind. Der Formelumsatz ergibt sich aus der Reaktion: $Zn_{(s)} + Cu^{2+}_{(aq)} -> Cu_{(s)} + Zn^{2+}_{(aq)}$.

In der folgenden Tabelle sind die einzelnen Vorgänge der Reihe nach beschrieben:

Oxidation des Zinks	Reduktion der Cu ²⁺ -lonen	
Sublimation der Zn-Atome aus dem Metallgitterverband	4. Dehydratation der Cu ²⁺ -Ionen	
2. Ionisation der Zn-Atome (Oxidation)	5. De-Ionisation der Cu ²⁺ -Ionen (Reduktion)	
3. Hydratation der Zn ²⁺ -Ionen	6. Resublimation der Cu-Atome zu einem Metallgitterverband	
Summe der Oxidation des Zn	Summe der Reduktion des Kupfers	

Die beteiligten Energien der Elemente:

Energie	Zn/Zn ²⁺	Cu/Cu ²⁺
ΔH^{o}_{sub} [kJ/mol]	+131	340
ΔH° _{ion} [kJ/mol]	+2652	+2716
ΔH° _{hyd} [kJ/mol]	-2057	-2116

Arbeitsaufträge:

- 1. Trage die entsprechenden Werte in die obere Tabelle ein. Bedenke dabei das Vorzeichen: welche Energien sind aufzuwenden (+) und welche werden frei (-)?
- 2. Berechne die Summe der Energien für den Oxidationsund den Reduktionsvorgang: Summe der Energien: $\Delta H^o = \underline{\hspace{1cm}} kJ/mol$
- 3. Berechne die Gesamtenergie für den Formelumsatz.
- 4. Berechne über die angegebenen Formelbeziehungen die Spannung zwischen den beiden Halbzellen.

Formelbeziehungen:

Die freie Standard-Enthalpie einer Redox-Reaktion entspricht der elektrischen Arbeit einer galvanischen Zelle: $\Delta G^{\circ} = -W_{el}$.

Die elektrische Arbeit ist das Produkt aus Spannung, Stromstärke und Zeit:

$$W_{el} = U * I * t = U * Q$$

Wird in einer galvanischen Zelle unter Standardbedingungen die Ladung Q = z * F (bei einem Formelumsatz) transportiert, erhält man

$$\Delta G^{\circ} = -\Delta E^{\circ} * z * F mit F = 96487 C/mol [C=Coulomb]$$

Die freie Enthalpie ΔG° einer Redoxreaktion kann also experimentell bestimmt werden, indem man die Zellspannung der entsprechenden galvanischen Zelle unter Standardbedingungen misst.

Ergebnis der Berechnung: $\Delta E =$

Beziehungen zwischen den Energiearten: 1 J = 1 W * s = 1 V * A * s 1 C = 1 A * s