Raffinerietechnik

Destillation	Rohöldes- tillation	Auftrennung in: Gase, Benzin, Kerosin, Leichtes Mitteldestillat, Schweres Mittel- destillat, Rückstand
	Vakuum- destillation	Rückstandsverarbeitung aus der Roh- öldestillation: Vakuumgasöl, Destillate für Konversionsanlagen, Schmieröle, Rückstände: Heizölzusatz, Bitumen
	Flüssig- gastrennanlagen	Trennung der Gase aus dem Kolonnenkopf: De-Ethaniser, De-Propaniser
	De-Iso- pentaniser	Destillation des Leichtbenzins: Iso-pentan: 90% Reinheit (hochoktaniges Benzin)
Konversion	Thermisches Cracken Visbreaken	500 °C; kurze Überhitzung der eingesetzten Destillationsrückstände unter Druck; Röhrenspaltofen; Steuerung der Temperatur und der Verweilzeit;
	Coken	500 °C; Verarbeitung von Rückständen mit hohem S-, N- und Me-Gehalt; Spaltung in Gase, Benzine, Mitteldestillate und Petrolkoks; Kalzinierter Koks: Elek- trodenherstellung
	Katalytisches Cracken	500 °C; staubförmige Katalysatoren, z.B. Al- Silikate; Wachsdestillate; KW-Gemisch,
	Hydrocracken	katalyt. Spaltverfahren in Gegenwart von H ₂ -Gas; p: 100-150 bar; hydrierende Spaltung, teuerstes, aber flexibelstes Verfahren;
Nachbehandlung Veredelung	Entschwefelung	S-Gehalt: 0,x-x%; Vermischung des Edukts mit H ₂ ; Katalyse; 300-400 °C; H ₂ S-Bildung; Verbrennung von H ₂ S in der Claus-Anlage; S für die H ₂ SO ₄ -Produktion
	Reformieren	Erhöhung der Octanzahl des Rohbenzins (40-60) durch Reformieren am Pt-Katalysator (Platforming): Octanzahl 95-100; Benzolbildung: Absenkung von 35% auf 5%; H ₂ -Gasbildung für Entschwefelung;
	Mischanlagen	Flüssiggas/Flugturbinentreibstoffe: Direktvertrieb; Otto-,Dieselkraftstoff und Heizöle werden nach dem "online-blending-Verfahren" aus bis zu 12 verschiedenen Komponenten nach DIN-Normen zusammengemischt.