Schriftliche Überprüfung Nr GK _ Name Datum

Im folgenden Text werden **verschiedene Reaktionen** vorgestellt. Benenne die **reagierenden Teilchen** und beurteile, ob diese Reaktionen **möglich** sind und was dabei **beobachtet** werden kann. Begründe deine Beurteilung über den Vergleich der Standardpotenzialwerte E°: wer ist der stärkere E-Donator bzw. E-Akzeptor?

	Reagierende Teilchen? möglich oder nicht?	Wesentliche Beobachtung	Begründung
Eine Magnesiumplatte wird in eine Zinksulfat- Lösung getaucht.			
Eine Bleiplatte wird in eine Eisensulfat-Lösung getaucht.			
Eine Natriumiodid- Lösung wird mit Bromwasser versetzt.			
Eine Nickelplatte wird in eine Zinksulfat-Lösung getaucht.			
Eine Lithiumchlorid- Lösung wird mit Bromwasser versetzt.			
Eine Kaliumbromid- Lösung wird mit Chlorwasser versetzt.			
Eine Eisenplatte wird in eine Bleichlorid-Lösung getaucht.			
Eine Silberplatte wird in eine Zinnchlorid-Lösung getaucht.			
$i(s) \rightleftharpoons Li^+(aq) + e^-$	Tabelle der Standare	-	•
$K(s) \rightleftharpoons K^+(aq) + e^-$	-2,92 der Metalle (links) un	d der Nichtmetalle (unter	n)
$Ca(s) \rightleftharpoons Ca^{2+}(aq) + 2e^{-}$ $Va(s) \rightleftharpoons Na^{+}(aq) + e^{-}$ $Va(s) \rightleftharpoons Mg^{2+}(aq) + 2e^{-}$ $Va(s) \rightleftharpoons Al^{3+}(aq) + 3e^{-}$ $Va(s) \rightleftharpoons Mn^{2+}(aq) + 2e^{-}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2(s)+2e^{-}$ + 0,54 $3r_{2}(1)+2e^{-}$ + 1,07 $3r_{2}(g)+2e^{-}$ + 1,36 $4r_{2}(g)+2e^{-}$ + 2,87	
$\operatorname{In}(s) \rightleftarrows \operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-}$	<mark>-0,76 </mark>	r das Potenzial eines Red	oxpaares, umso
$Cr(s) \rightleftharpoons Cr^{3+}(aq) + 2e^{-}$ $Cr(s) \rightleftharpoons Fe^{2+}(aq) + 2e^{-}$	-0,74 -0,41 Elektronendonatoren	sind die Metall	; je das
$Cd(s) \rightleftharpoons Cd^{2+}(aq) + 2e^{-}$	-0.40		
$Co(s) \rightleftharpoons Co^{2+}(aq) + 2e^{-1}$ $Co(s) \rightleftharpoons Ni^{2+}(aq) + 2e^{-1}$		kere Elektronen	sind die Metall-
$n(s) \rightleftharpoons Sn^{2+}(aq) + 2e^{-}$	<u>-0,14</u> Nichtmet	all-Ionen verhalten sich v	wie
$Pb(s) \rightleftharpoons Pb^{2+}(aq) + 2e^{-}$ $Pb(s) \rightleftharpoons 2H^{+}(aq) + 2e^{-}$	-0,13 0,00 Nichtmetalle verhalter	n sich wie	
() . 0 21() . 0 =	0.05		ist sein
$Ag(s) \rightleftharpoons Ag^{+}(aq) + e^{-}$ $Ag(s) \rightleftharpoons Hg^{2+}(aq) + 2e^{-}$	0.05		
$\begin{array}{c} \operatorname{d} g(t) \leftarrow \operatorname{Hg}^{2}(\operatorname{aq}) + 2e^{-t} \\ \operatorname{d} g(t) \rightleftharpoons \operatorname{Pt}^{2+}(\operatorname{aq}) + 2e^{-t} \\ \operatorname{d} g(t) \rightleftharpoons \operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-t} \end{array}$	+1,20 Korrespondierendes _		_·