Chemie-Arbeitsblatt	_ Klasse _	Name:	Datum:

Mechanismus der elektrophilen Substitution am Benzol

Da der aromatische Ring eine relativ hohe Elektronendichte	LEWIS-Säuren sind Moleküle oder Ionen mit
aufweist, wird er bevorzugt von einem Elektronenmangel-	unvollständig besetzter äußerer Elektronenschale. Sie können gegenüber anderen Reaktionspartnern als <i>Elektronenpaar-Akzeptoren</i> wirken, in dem sie eine kovalente Bindung mit dem Reaktionspartner
Teilchen (Agens) angegriffen.	
Deswegen ist die typische Reaktion aromatischer Verbind-	
ungen nicht die, sondern die	ausbilden.
Unterstützt	LEWIS-Basen sind dagegen Moleküle oder Ionen mit freien Elektronenpaaren. Sie können gegenüber anderen Reaktionspartnern als <i>Elektronenpaar-Donatoren</i> wirken, dabei kommt ebenfalls
wird dieser Mechanismus wie bei der	
Addition von Brom an Alkene durch Stoffe, die eine	
des Brom-Moleküls einleiten.	eine kovalente Bindung zustande. Das Neutralisationsprodukt aus LEWIS-Säure und -Base ist ein
Diese Stoffe, sog, reagier, reagier-	Tonsprodukt das 22 W 15 Saute and Base ist em
en mit dem Agens, hier Brom. Aus Eisen und einem Teil des	
Broms entsteht somit Die	verläuft
in zwei Schritten:	
1. Schritt: Angriff des positiv po	olarisierten Brom-Atoms auf das Benzol-Molekül:
+ $ \underline{\overline{Br}} - \underline{\overline{Br}} $ langsam $ \underline{\overline{Br}} - \underline{\overline{Br}} $ Tradukt	FeBr ₃ $\frac{\text{schnell}}{\text{Interdukt}}$ $\frac{H}{Br}$ + FeBr ₄
Unter Ausbildung einer Kohlenstoff-Brom-Bindung zerfällt	tas
Tradukt (sog. π -Komplex) in ein Carbenium-Ion (sog. σ -Ko	
plex oder Interdukt) und ein FeBr ₄ -Ion. Die	
Ladung des Carbenium-Ions ist, das Ion	
(s. Abb. rechts).	Mesomere Grenzstruktu-
2. Schritt: Re-Aromatisierung und Bildung von Brombenzol	ren des Interduktes bei der Bromie- : rung von Benzol
Das Carbenium-Ion spaltet ein	18113
ab und es ent-	schnoll Br
steht ein Brombenzol-Molekül. Das	
wird vom FeBr ₄ -Ion	Brombenzol
unter Bildung vonGas und	
Eisen(III)-bromid aufgenommen. Die Abspaltung des	führt unter Freisetzung von
	schen Zustand, deswegen tritt eine denkbare Addition
des Bromid-Ions an das Interdukt entsprechend der Addition	
des aromatischen Systems und die	_
Unterstützung durch die LEWIS-Säure im 1. Schritt der	
-	gen der langsamste,
Schritt. Die Protonenabspaltung erfolgt dann als 2. Schritt sch	
Energie-Abgabe zurückgebildet wird. Die Substitution ist als	
gegenüber der Addition die bevorzugte Reaktion aromatische	