
Chemie-Arbeitsblatt _	_ Klasse	Name:	Datum:				_		
	Die Elek	tronegativitä	t (El	N)					
bindende Elek Die Elektronegativität der H a	Friedensnobelpr Maß für die An tronenpaare. uptgruppeneler	eis 1962. ziehungskraft eine nente nach PAULI	s Ato	mkern	s in ei	ner M	lolekü	lbindu	ng at
Dabei zeigt sich, dass die EN innerhalb einer Periode von links nach rechts zunimmt und innerhalb einer Gruppe von oben nach unten abnimmt. Was sind die Ursachen dafür? Geht man von obiger Definition aus, dann ist für die Anziehungskraft eines Atomkerns auf das bindende Elektronenpaar sicher die Kernlad-			H 2,1	Be	В	С	N	0	F
ung eines der beiden Bindungspartner verantwortlich. Andererseits wird die Wirkung der Kernladung durch die darüber liegenden Elektronenschalen abgeschwächt. Die EN-Werte werden also maßgeblich von den			1,5 Mg 1,2	2,0 Al 1,5	2,5 Si 1,8	3,0 P 2,1	3,5 S 2,5	4,0 Cl 3,0	
und der been nehmen im PSE von links nac	influsst. Die		K 0,8	Ca 1,0	Ga 1,6	Ge 1,8	As 2,0	Se 2,4	Br 2,8
unten Die Periode von links nach recht			0,0	Sr 1,0	In 1,7	Sn 1,8	Sb 1,9	Te 2,1	I 2,5
umso, je			CS	Ba 0,9	T1 1,8	Pb 1,8	Bi 1,9	Po 2,0	At 2,2
ist. Die EN i				grau: H unten			nkelgra	ıu: Nicł	ıtmeta
Die EN-Werte wurden aus e punkte, Dissoziations- und B gleichswerte, mit deren Hilfe negativitätsdifferenz ΔEN b dabei immer eine positive Z	indungsenergien sich abschätzen l ildet. Die Elektro	und anderen ener äßt, wie stark pola onegativitätsdiffere	getisc r eine nz ist	hen W Bindu	/erten	ermi , weni	ttelt.] n man	Es sin die El	d Ve ektro
proportional der Polarität standenen Dipols. Aus der Polarität einer Bind Spanne gwischen AEN-0	der Bindung und lung ergibt sich	nd der Stärke des die Notwendigkei	s ent-		So	chwerp	polare ndung unkte c egative	der pos	itiven

Spanne zwischen $\Delta EN=0$ (Minimum) und $\Delta EN=3,7$ (Maximum) praktikabel einteilen zu müssen. Vereinfacht kann man folgende (willkürliche) **Festlegung** treffen: **ΔEN<1:** kovalente Bindungen (mehr oder weniger polar); 1<ΔEN<2: Übergangsbereich mit kovalenten und ionischen Bindungsanteilen, **\Delta EN>2**: Ionenbindungen.

Arbeitsaufträge:

- 1. Fülle die leeren Felder in der Tabelle aus.
- 2. Zeichne die Strukturformeln folgender Moleküle: HF, HCl, HBr, CH₄, CO₂, NH₃, CCl₄, CH₃Cl in der Lewis-Schreibweise.
- 3. Berechne die EN-Differenz zwischen den einzelnen Atomen.
- 4. Charakterisiere anschließend die im Molekül vorliegende Atombindung und teile die Moleküle in drei Gruppen ein.

r		NaCl AlCl ₃ PC			
-	h _m bzw. h _b	=801 °C	=183 °C	=73 °C	=-35 °C
,	Zustandsform:				
	$\Delta EN=$				
•	Bindungs- charakter	Ionen- bindung ✓			unpolare Elektronen- paarbindung