Die Oktettregel

Hauptgruppe	I	II	III	IV	V	VI	VII	VIII	
Gruppenname	Alkali- metalle	Erdalkali- metalle	Bor- Gruppe	Kohlenstoff- Gruppe	Stickstoff- Gruppe	Chalko- gene	Halo- gene	Edel- gase	
Elektronenabgabe oder -aufnahme	Elektronenabgabe			abhängig vom Reaktionspartner	Elektronenaufnahme				
Anzahl der abgegebenen oder aufgenommenen Elektronen	1	2	3	4	3	2	1		
entstandene Ionen Me=Metall, Nme=	Me ¹⁺	Me ²⁺	Me ³⁺	$C^{4+} \\ C^{4-}$	Nme ³⁻	Nme ²⁻	Nme ¹⁻		
Verallge- meinerung	Metalle geben nur Elektronen ab				Nme nehmen so viel Elektronen auf, dass die Valenzschale bis zum Oktett gefüllt ist			che	emisch
Wenn nicht wie	+7	+6	+5	-1	-5	-6	-7		
oben, dann so	Elektronen <mark>aufnahme</mark>			s.o.	Elektronen <mark>abgabe</mark>				
entstandene Ionen	Me ⁷⁻	Me ⁶⁻	Me ⁵⁻	s.o.	Nme ⁵⁺	Nme ⁶⁺	Nme ⁷⁺		
Konsequenz	Ladungsungleichgewichte viel größer als umgekehrt								

Arbeitsauftrag: Denke nach und begründe!

- 1. Warum können die Metalle nicht Elektronen abgeben und die Nichtmetalle geben auch Elektronen ab?
- 2. Spiele beide Vorgänge, den richtigen und den falschen, für jeweils eine **Elementkombination (Me und Nme)** aus allen Gruppen der 2. oder 3. oder 4. Periode durch.

Beispiel:

Na gibt ein Elektron ab, 11 Protonen bleiben im Kern, Ladungsverhältnis: 11p+/10e⁻ Cl nimmt ein Elektron auf, 17 Protonen sind im Kern, Ladungsverhältnis: 17p+/18 e⁻ Umgekehrter Vorgang:

Na nimmt 7 Elektronen auf, 11 Protonen bleiben im Kern, Ladungsverhältnis: 11p+/18e⁻ Cl gibt 7 Elektronen ab, 17 Protonen sind im Kern, Ladungsverhältnis: 17p+/10 e⁻

Fazit: Je mehr das Ladungsverhältnis von p : e⁻ = 1 : 1 abweicht, desto energetisch ungünstiger wird die Situation des Ions.